Article

Monoalkylation of C₆₀ and C₇₀ with Zn and Active Alkyl Bromides

Zhongwen Wang and Mark S. Meier*

Center for Advanced Carbon Materials and Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055

meier@uky.edu

Received August 26, 2002

We report a convenient and simple solution-phase electron-transfer reaction of C₆₀ with zinc and α -bromoacetonitrile, α -bromo acetate esters, allyl bromide, benzyl bromide and α -bromo ketones in DMF, with which different types of monoalkylated C_{60} derivatives can be prepared. When this method is employed with C_{70} , 2-carbomethoxymethyl-1,2-dihydro[70]fullerene (isomer 5a) is produced as one of the two 1,2-monoalkylated C₇₀ isomers, together with the first 5,6-monoalkylated C₇₀ derivative.

Introduction

Since C_{60} was first isolated and produced in bulk quantities,^{1,2} chemists have been attracted by its interesting chemistry³⁻¹⁰ as well as by potential applications.4,11-14

C₆₀ reacts as an electrophilic molecule with highly strained double bonds.^{15–17} Relief of strain is the essential driving force for most of the reactions known to proceed with fullerenes.¹⁷ Reactions that have been successfully employed on C_{60}^{3-10} include nucleophilic additions, Diels-Alder, [1,3]-dipolar, and other types of cycloadditions, oxidations, halogenations, addition of carbenes and nitrenes,¹⁸ hydrogenations,^{19,20} organo-transition-metal reactions,²¹ and others.³⁻¹⁰

Due to complexities from the lower symmetry (D_{5h}) , there are significantly fewer reports of chemical reactions of C_{70} than there are of C_{60} .^{3-8,22} However, hydrogenation,²³⁻²⁵ fulleroid synthesis,²⁶ azafulleroid synthesis,²⁷

- (1) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162-163.
- (2) Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354-358.
- (3) The Chemistry of Fullerenes; Taylor, R., Ed.; World Scientific: River Edge, NJ, 1995.
- (4) Kadish, K. M.; Ruoff, R. S. Fullerenes Chemistry. Physics, and *Technology*, John Wiley & Sons: New York, 2000. (5) Hirsch, A. *The Chemistry of the Fullerenes*, Thieme: Stuttgart,
- 1994.
 - (6) Taylor, R.; Walton, D. R. M. Nature 1993, 363, 685-693.
 - (7) Hirsch, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1138-1141.
 - (8) Hirsch, A. J. Phys. Chem. Solids 1997, 58, 1729-1740.
 - (9) Hirsch, A. Synthesis 1995, 895-913.
 - (10) Diederich, F.; Thilgen, C. Science 1996, 271, 317-323.
 - (11) Jensen, A. W.; Wilson, S. R.; Schuster, D. I. Biorg. Med. Chem.
- 1996, 4, 767-779. (12) Chen, B.-X.; Wilson, S. R.; Das, M.; Coughlin, D. J.; Erlanger,
- B. F. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 10809-10813.
 - (13) Ros, T. D.; Prato, M. Chem. Commun. 1999, 663-669.
 - (14) Prato, M.; Maggini, M. Acc. Chem. Res. 1998, 31, 519–526.
 (15) Fowler, P. W.; Manolopoulos, D. E. An Atlas of Fullerenes;
- Clarendon: Oxford, 1995.
 - (16) Haddon, R. C. Acc. Chem. Res. 1988, 21, 243–240.
 (17) Haddon, R. C. Science 1993, 261, 1545–1550.
- (18) Hirsch, A.; Nuber, B. Acc. Chem. Res. 1999, 32, 795–804.
 (19) Gol'dshleger, N. F.; Moravskii, A. P. Russ. Chem. Rev. 1997,
- 66 323-342
- (20) Bergosh, R. G.; Meier, M. S.; Laske Cooke, J. A.; Spielmann,
 H. P.; Weedon, B. R. J. Org. Chem. 1997, 62, 7667–7672.
 (21) Balch, A. L.; Olmstead, M. M. Chem. Rev. 1998, 98, 2123-2165.

10.1021/jo020563o CCC: \$25.00 © 2003 American Chemical Society Published on Web 03/27/2003

oxidations,²⁸⁻³⁰ cycloaddition,³¹⁻³⁷ chlorination,³⁸ arylation, 39,40 reactions with organometallic reagents, 41 and addition of nucleophiles $^{42-45}$ have been reported. Among these, monoalkylation is one of the most important reactions, as versatile synthetic intermediates are formed.

- (22) Thilgen, C.; Herrmann, A.; Diederich, F. Angew. Chem., Int. Ed. Engl. 1997, 36, 2268–2280.
- (23) Henderson, C. C.; Rohlfing, C. M.; Gillen, K. T.; Cahill, P. A. Science **1994**, *264*, 397–399.
- (24) Spielmann, H. P.; Wang, G.-W.; Meier, M. S.; Weedon, B. R. J. Org. Chem. 1998, 63, 9865–9871.
 (25) Avent, A. G.; Darwish, A. D.; Heimbach, D. K.; Kroto, H. W.; Meidine, M. F.; Parsons, J. P.; Remars, C.; Roers, R.; Ohashi, O.; Taylor, R.; Walton, D. R. M. J. Chem. Soc., Perkin Trans. 2 1994, 15–90.
- (26) Kiely, A. F.; Haddon, R. C.; Meier, M. S.; Selegue, J. P.; Brock, C. P.; Wang, G.-W.; Chen, Y. *J. Am. Chem. Soc.* **1999**, *121*, 7971– 7972
- (27) Bellavia-Lund, C.; Wudl, F. J. Am. Chem. Soc. 1997, 119, 943-946.
- (28) Hawkins, J. M.; Meyer, A.; Solow, M. A. J. Am. Chem. Soc. 1993, 115, 7499-7500.
- (29) Bezmelnitsin, V. N.; Eletskii, A. V.; Schepetov, N. G.; Avent, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1997, 683-686.
 (30) Meier, M. S.; Kiegiel, J. Org. Lett. 2001, 3, 1717-1719.
 (31) Smith, A. B., III; Strongin, R. M.; Brard, L.; Furst, G. T.;
- Romanow, W. J.; Owens, K. G.; Goldschmidt, R. J. J. Chem. Soc., Chem. Commun. 1994, 2187-2188.
- (32) Meier, M. S.; Wang, G. W.; Haddon, R. C.; Brock, C. P.; Lloyd,
- M. A.; Selegue, J. P. J. Am. Chem. Soc. 1998, 120, 2337–2342.
 (33) Darwish, A. D.; Avent, A. G.; Taylor, R.; Walton, D. R. M. J. Chem. Soc., Perkin Trans. 2 1996, 2079–2084.
 - (34) Bingel, C. Chem. Ber. 1993, 126, 1957-1959.
- (35) Meier, M. S.; Poplawska, M.; Compton, A. L.; Shaw, J. P.; Selegue, J. P.; Guarr, T. F. J. Am. Chem. Soc. 1994, 116, 7044–7048.
 (36) Wilson, S. R.; Lu, Q. J. Org. Chem. 1995, 60, 6496–6498.
- (37) Herrmann, A.; Rüttimann, M.; Thilgen, C.; Diederich, F. Helv.
- Chem. Acta 1995, 78, 1673-1704. (38) Birkett, P. R.; Avent, A. G.; Darwish, A. D.; Kroto, H. W.; Taylor,
- R.; Walton, D. R. M. J. Chem. Soc., Chem. Commun. 1995, 683-684. (39) Avent, A. G.; Birkett, P. R.; Darwish, A. D.; Kroto, H. W.; Taylor,
- R.; Walton, D. R. M. Tetrahedron 1996, 52, 5235-5246. (40) Sawamura, M.; Iikura, H.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 1998, 120, 8285-8286.
- (41) Balch, A. L.; Catalano, V. J.; Lee, J. W.; Olmstead, M. M.;
 Parkin, S. R. J. Am. Chem. Soc. 1991, 113, 8953-8955.
 (42) Kadish, K. M.; Gao, X.; Gorelik, O.; Van Caemelbecke, E.;
 Suenobu, T.; Fukuzumi, S. J. Phys. Chem. A 2000, 104, 2202-2207.
- (43) Karfunkel, H. R.; Hirsch, A. Angew. Chem., Int. Ed. Engl. 1992, *31*, 1468–1470.
- (44) Meier, M. S.; Bergosh, R. G.; Gallagher, M. E.; Spielmann, H. P.; Wang, Z. W. J. Org. Chem. **2002**, 67, 5946–5952.
- (45) Hirsch, A.; Grösser, T.; Skiebe, A.; Soi, A. Chem. Ber. 1993, 126, 1061-1067.

There are several methods for preparation of monoalkylated C₆₀ derivatives, including addition of nucleophilic organometallic reagents to C_{60} , 45-51 nucleophilic additions of C_{60}^{2-} or $C_{60}H^-$ derived chemically from $C_{60}^{52,53,54}$ from $C_{60}H_2,{}^{44}$ and photoinduced electron transfer (PET) radical additions.^{45,55–62} However, monoalkylation of anions from $C_{60}H_2$ or by the reaction of C_{60} with organometallic reagents can be difficult to control and sometimes proceeds rapidly to dialkylated or polyalkylated adducts.44,50 Nucleophilic addition reactions have also been employed for the preparation of monoalkylation of C_{70} .⁴²⁻⁴⁵ In these cases, the structure of the monoalkylated C_{70} derivative has not been unambiguously elucidated due to the limited amount available, the complex reaction mixtures, the poor solubility, the difficulty in crystallization and the lack of well-characterized analogues for comparison of chemical shifts in the ¹H NMR.

We are interested in preparation of monoalkylfullerenes through alkylation of anions derived from $C_{60}H_2$ and $C_{70}H_{2}$,⁴⁴ as well as in direct addition of nucleophilic reagents to C_{60} and C_{70} . In this paper, we report a convenient solution-phase method for the monoalkylation of C₆₀ (Scheme 1) and C₇₀ (Scheme 2), by reaction with Zn and alkyl bromides.^{63,64} We also report the first elucidation of the structures of two monoalkylated C₇₀ derivatives. These reactions provide an approach to the synthesis of fullerene derivatives bearing a variety of functional groups, compounds that can be further modified for specific applications.

Discussion

Production of fullerene anions is commonly accomplished by dissolving metal reductions,⁶⁵ including reductions with zinc.⁶⁶ Electrons can be transferred from alkali metals (e.g., K, Na) to fullerenes,³⁻¹⁰ and the resulting

- (46) Banim, F.; Cardin, D. J.; Heath, P. Chem. Commun. 1997, 25-26.
- (47) Wang, G.-W.; Murata, U.; Komatsu, K.; Wan, T. S. M. Chem. Commun. 1996, 2059-2060.
- (48) Fagan, P. J.; Krusic, P. J.; Evans, D. H.; Lerke, S. A.; Johnston, E. J. Am. Chem. Soc. 1992, 114, 9697-9699.
- (49) Tanaka, T.; Komatsu, K. Synth. Commun. 1999, 29, 4397-4402. (50) Hirsch, A.; Soi, A.; Karfunkel, H. R. Angew. Chem., Int. Ed. Engl. 1992, 31, 766-768.
- (51) Nagashima, H.; Terasaki, H.; Kimura, E.; Nakajima, K.; Itoh,
 K. J. Org. Chem. 1994, 59, 1246–1248.
 (52) Chen, J.; Cai, R.-F.; Huang, Z.-E.; Wu, H.-M.; Jiang, S.-K.; Shao,
- Q.-F. J. Chem. Soc., Chem. Commun. 1995, 1553–1554.
 (53) Beck, W.; Bentele, H.-J.; Huffer, S. Chem. Ber. 1995, 128, 1059–
- 1060.
- (54) Fukuzumi, S.; Suenobu, T.; Hirasaka, T.; Arakawa, R.; Kadish, K. M. *J. Am. Chem. Soc.* **1998**, *120*, 9220–9227. (55) Fukuzumi, S.; Suenobu, T.; Patz, M.; Hirasaka, T.; Itoh, S.;
- Fujitsuka, M.; Ito, O. J. Am. Chem. Soc. 1998, 120, 8060-8068.
- (56) Tokuyama, H.; Isobe, H.; Nakamura, E. J. Chem. Soc., Chem. Commun. 1994, 2753-2754.
- (57) Mikami, K.; Matsumoto, S.; Ishida, A.; Takamuku, S.; Suenobu, T.; Fukuzumi, S. J. Am. Chem. Soc. 1995, 117, 11134-11141.
- (58) Fukuzumi, S.; Suenobu, T.; Fujitsuka, M.; Ita, O.; Tonoi, T.; Matsumoto, S.; Mikami, K. J. Organomet. Chem. 1999, 574, 32-39.
- (59) Mikami, K.; Matsumoto, S.; Tonoi, T.; Suenobu, T.; Ishida, A.; Fukuzumi, S. Synlett 1997, 85-87. (60) Mikami, K.; Matsumoto, S. Synlett 1995, 229-230.
- (61) Siedschlag, C.; Luftmann, H.; Wolff, C.; Mattay, J. Tetrahedron **1999**. 55. 7805-7818.
- (62) Siedschlag, C.; Luftmann, H.; Wolff, C.; Mattay, J. Tetrahedron **1997**. 53. 3587-3592.
- (63) Adams, R. Organic Reactions; John Wiley & Sons: New York, 1942: Vol. 1.
- (64) Erdik, E. Organozinc Reagents in Organic Synthesis; CRC Press: Boca Raton, 1996.
- (65) Reed, C. A.; Bolskar, R. D. Chem. Rev. 2000, 100, 1075-1119.

anions can then be alkylated to produce monoalkylated C₆₀ derivatives.⁵² In our initial studies on monoalkylation of C₆₀ using Zn and alkyl halides, we found that almost no reaction occurred when toluene was used as solvent, even when the mixture was heated. However, when DMF was used as solvent, the reaction proceeded smoothly at room temperature. With control of reaction temperature and time, monoalkylated products (3a-k) could be obtained in isolated yields that ranged from 6% to 45% (10-78% yield when adjusted for the unreacted C₆₀). Some examples, such as the reactions using phenyl α -bromoacetate, allyl bromide, or benzyl bromide, proceeded very rapidly and the reaction had to be carefully monitored by TLC or by HPLC to avoid multiple additions.

We extended the study to a number of alkylating reagents and found that active alkylation reagents, such as α -bromoacetonitrile, α -bromoacetate esters, allyl bromide, benzyl bromide, and α -bromo ketones, can react with C₆₀ successfully in the presence of zinc. Some less reactive reagents, such as α -chloroacetate esters, α -substituted- α -bromoacetate esters, α -bromo-*n*-butane, 1-iodobutane, and (2-iodoethyl)benzene failed to react with C₆₀, even when the corresponding zinc cuprates²⁰ were used at elevated temperature.

As with most derivatives of C₆₀, the solubilities of the monoalkylated products are reasonable in toluene and CS_2 , except for **3a**. Compound **3a** has limited solubility in CS₂, but sufficient material could be dissolved in 1,2dichlorobenzene- d_4 to permit measurement of the ¹³C NMR spectrum. Besides CS₂ and toluene, most of the products are slightly soluble in solvents such as THF, chloroform, dioxane, etc., but almost insoluble in ether, DMF and acetone. The products are very stable in air at room temperature; e.g., 3b can stand in air for several months.67

It should be noted that because the organozinc reagents derived from α -bromo ketones self-condense in the presence of Zn, the heterocoupling reactions of organozinc reagents derived from α -bromo ketones and Zn with other

⁽⁶⁶⁾ Wu, M.; Wei, X.; Qi, L.; Xu, Z. Tetrahedron Lett. 1996, 37, 7409-7412.

⁽⁶⁷⁾ It should be noted when air was passed through the solution of 3b in toluene at room temperature a trace of C₆₀ appeared and also a small amount of insoluble solid appeared, although most of the sample survived.

carbonyl compounds have been rarely reported.^{63,64} Under the conditions used in this study, the reactions of α -bromo ketones, Zn, and C₆₀ proceeded smoothly. All of the α -bromo ketone (including the excess reagent) was consumed, and the reaction proceeded to completion without formation of products from multiple additions. This is unlike the reactions of alkyl halides such as allyl bromide or benzyl bromide, in which multiple additions occur over time. These results are consistent with a competing reaction between the α -bromo ketone and its corresponding organozinc reagent, but these are slow relative to the alkylation of C₆₀.

Wang has reported⁴⁷ an example of a solid-phase reaction of ethyl bromoacetate, Zn, and C₆₀, a reaction that is considered to be a Reformatsky reaction.^{63,64} For the solution-state reaction studied in our work, we also anticipated a Reformatsky reagent. However when a preformed Reformatsky reagent was added to C₆₀, no reaction was observed. We found that if the alkylating agent was omitted and water was added after 1 h, C₆₀H₂ was obtained in 50% yield (by HPLC).⁶⁸ Based on these results, we believe that the mechanism of the monoalkylation reactions involves an electron-transfer reduction of the fullerene, rather than formation and addition of an organozinc reagent.

¹H, ¹³C NMR, and UV–vis of Compounds 3a–k. A combination of ¹H and ¹³C NMR, together with UV–vis spectroscopy, was used to assign the structure of compounds **3a–k**. For monoalkylated C_{60} derivatives (**3b**, for example), the chemical shift of the proton on the fullerene core is shifted downfield to 6.80 ppm, and the methylene group directly connected the fullerene core appears as a singlet at 4.47 ppm, indicating that the two protons in the methylene group are in the same chemical environment. In the ¹³C NMR, we observe 30 resonances for the C_{60} core (including two sp² carbons of single intensity,

FIGURE 1. HPLC chromatograms of crude reaction products: (a) **3b**, Cosmosil 5PBB column; (b) **5a** and **5b**, Cosmosil Buckyprep column. Mobile phase conditions for both: 100% toluene, monitored at 310 nm.

two sp³ carbons of single intensity and two sp² carbons of 4-fold intensity (due to the superposition of two lines of 2-fold intensity)). These data confirm that the structure is a 1,2-isomer with C_s symmetry.⁶⁹ The UV–vis spec-

^{(68) (}a) Control experiment one: C_{60} and Zn dust (activated by the method used in preparation of monoalkylated C₆₀ derivatives) were mixed and stirred at room temperature under N_2 . After 5 h, the black solution was decanted to toluene and H_2O and worked up as in preparation of monoalkylated C60 derivatives. The combination of HPLC, UV-vis, and ¹H NMR confirmed the production of 1,2-C₆₀H₂ with a yield of 50%, together with some $C_{60}H_4$ and higher hydrogenated adducts. (b) Control experiment two: A mixture of Zn (pretreated as before) and methyl bromoacetate was stirred at room temperature under N₂ for 1 h, and the solution was decanted to another two predried flasks, the volume of the solution in these two flasks was same. In one of these two flasks, C_{60} was added and the mixture was stirred at room temperature under N2. No reaction was detected even after several days. In the other flask, 2,3-dimethoxybenzaldehyde was added and the mixture was stirred under N_2 for 4 h, after workup and purification with silica gel column, the expected Reformatsky-type product was obtained: ¹H NMR of the product (CDCl₃) (ppm) 2.72 (q, 1H), 2.73 (q, 1H), 3.41 (br, 1H), 3.69 (s, 3H), 3.83 (s, 3H), 3.85 (s, 3H), 5.35 (q, 1H), 6.84 (q, 1H), 6.99–7.06 (m, 2H).

⁽⁶⁹⁾ The fullerene core numbering system used herein is the "trivial" system described in: Powell, W. H.; Cozzi, F.; Moss, G. P.; Thilgen, C.; Hwu, R. J.-R.; Yerin, A. *Pure Appl. Chem.* **2002**, *74*, 629–695.

FIGURE 2. Absorption spectra of 5a and 5b.

trum is also consistent, displaying a peak at 434 nm, characteristic of 1,2-adducts of $C_{60}\!^{.45}$

As expected for C_{70} , the most reactive site toward alkylation is the strained C1-C2 bond, and in most examples we studied, the second more reactive one is the C5-C6-bond. In the reaction of methyl bromoacetate, Zn and C_{70} , two isomeric monoadducts were produced and isolated in a ratio of 9:1 by HPLC (Figure 1). The major isomer was identified as the 1,2-isomer (**5a**) and the minor isomer was identified as the 5,6-isomer (**5b**) by UV-vis (Figure 2) and NMR spectroscopy.

¹H and ¹³C NMR and UV-vis of Compounds 5a and 5b. A combination of ¹H and ¹³C NMR, together with UV-vis spectra, was also used to assign the structure of compounds 5a and 5b. For isomer 5b (Scheme 2), the chemical shift of the proton on C_{70} is 4.83 ppm, and the methyl ester appeared as a singlet at 3.85 ppm. The methylene group showed an AB pattern with resonances at 3.56 and 3.46 ppm and a coupling constant of 16 Hz. The absorption spectrum of **5b** is like that of other 5,6isomers of C₇₀ adducts (Figure 2).³² There are 62 resonances for the C_{70} core in the ${}^{13}C$ spectrum of $\mathbf{5b}$ (including two sp³ carbon resonances of single intensity, 8 sp² carbon resonances of double intensity, and 52 sp² carbon resonances of single intensity) and two sp³ nonfullerene (upfield) carbon resonances, together with the carbonyl resonance (169.96 ppm). The data indicate the symmetry is C_1 . All of the data above are consistent with the assignment of **5b** as the 5,6-isomer. Addition to the C5-C6 bond has been reported often in the literature and is established as the second most reactive bond in C₇₀.^{29,30,32,35,36}

In the ¹H NMR of isomer **5a** (Scheme 2), the chemical shift of the proton on the C_{70} core is 4.70 ppm, which is significantly shielded relative to the fullerene-bound proton in **3b**. The resonances of the protons in the methylene and methyl groups of **5a** appear as singlets at 3.91 and 3.98 ppm, respectively. In the ¹³C NMR spectrum of **5a**, there are 33 resonances for the C_{70} core

(including two sp³ carbon resonances of single intensity, two sp² carbon resonances of single intensity, two resonances of 4-fold intensity, and one resonance of 6-fold intensity resulting from the superposition of several resonances), together with two resonances for two sp³ nonfullerene carbons and the carbonyl group resonance (170.05 ppm). The UV–vis spectrum of **5a** is almost identical to that of 1,2-C₇₀H₂. All these data confirm that isomer **5a** results from addition to the C1–C2 bond.

There are two possible orientations for addition to the C1–C2 bond, **5a** and **5c**. Generally, protons over the pole of C₇₀ have higher chemical shifts than others over the less pyramidalized carbons; that is, the protons at C-2 have significantly higher chemical shifts than at C-1. This trend holds in the case of protons directly connected to the fullerene cores (8a), of methylene groups directly connected to the fullerene cores (6a and 6b), and of methyl groups indirectly connected to the fullerene cores (7a and 7b): $\Delta \delta_{CH2}$ 6a-6b = 0.37 ppm,³¹ $\Delta \delta_{CH3}$ 7a-7b = 0.48 ppm,³⁵ $\Delta \delta_H 8aH_2 - 8aH_1 = 0.14$ ppm.^{23,25,70} The chemical shifts of protons at C1 and C5 are typically very similar due to their similar environments ($\Delta \delta_{CH2} \mathbf{6b} - \mathbf{6c}$ = -0.05 ppm, $\Delta \delta_{CH2}$ **7b**-**7c** = 0.03 ppm, $\Delta \delta_{H}$ **8a** H_1 -**8b** = -0.12 ppm). In our case, there is only a small difference between the chemical shifts of protons directly connected to C₇₀ cores in **5a** and **5b** ($\Delta \delta_{\rm H}$ **5a**-**5b** = -0.13 ppm), but a large difference between the chemical shifts of protons at methylene groups in **5a** and **5b** ($\Delta \delta_{CH2}$ **5a**-**5b** = 0.40 ppm⁷¹). Based on this analysis, we believe the 1,2-isomer we obtained is 5a, in which the proton is at C1 and CH_2 - CO_2Me group is at C2 (Scheme 3).

⁽⁷⁰⁾ H1 and H2 represent the protons on positions 1 and 2 of C_{70} , respectively.

⁽⁷¹⁾ The chemical shift values of methylene groups in **5b** and **6c** are the averaged values of the geminal protons.

Conclusions

To the best of our knowledge, this is the first report of solution-phase reactions of C_{60} and C_{70} with Zn and alkylating agents. A number of different types of monoalkylated C_{60} derivatives can be conveniently and simply prepared. With further manipulations, additional types of homo- and hetero-dialkylated derivatives or other types of derivatives can be prepared. By comparison of the ¹H NMR spectrum with other literature examples, the structure of isomer **5a** is assigned. Also in this paper, the first 5,6-isomer of monoalkylated C_{70} was produced, separated, and characterized.

Experimental Section

 C_{60} (99.5+%) and C_{70} (98+%) were purchased from MER Corp. HPLC was performed using a Cosmosil 5PBB (10 mm \times 250 mm) (100% toluene as the mobile phase) semipreparative column and/or Cosmosil Buckyprep (10 mm \times 250 mm) (100% toluene as the mobile phase) semipreparative column. $^1\rm H$ and $^{13}\rm C$ NMR were measured at 400 and 100 MHz, respectively, on a 400 MHz instrument and, unless otherwise noted, using 75% CS₂ and 25% CDCl₃ as solvents and using CHCl₃ as the reference. UV–vis spectra were recorded during HPLC analysis with a Waters 996 PDA detector. Mass spectral data were obtained by negative-ion FAB, using nitrobenzyl alcohol (NBA) as matrix.

General Experimental Procedure. Into a 100 mL twoneck flask were added C_{60} (144 mg, 0.20 mmol), 72 the alkyl halide (5.0 mmol), and 40 mL of DMF. Under a N₂ flow, the mixture was stirred vigorously and heated to 50 °C (oil-bath temperature), and then Zn dust (0.65 g, 10.0 mmol, having been successively washed with 1 \times 2 mL 3% HCl, 3 \times 5 mL distilled H_2O, 2 \times 5 mL THF, and 1 \times 5 mL DMF) was rinsed into the reaction mixture with 2 mL of DMF. The resulting mixture was stirred vigorously, and the color turned to deep black. After more specific time (TLC monitoring), the mixture was poured into 200 mL of H₂O containing 4 mL of AcOH, and 300 mL of toluene was added. The mixture was shaken, the layers were separated, and the upper (toluene) layer was further washed with H_2O (2 \times 150 mL) and dried overnight with anhydrous Na₂SO₄. After being filtered and concentrated, the concentrated solution (~15 mL, or more, depending on the solubility of the products) was applied to a silica gel column and eluted with toluene/hexane (1:9) to produce a band composed of unreacted C_{60} and then eluted with 100% toluene to obtain a second fraction that contained the alkylated products. The second fraction was separated by HPLC to obtain the purified products. The HPLC chromatograms of C₆₀ and C70 reactions are shown in Figure 1, and the UV spectra of the two isomers (5a and 5b) of C70 derivatives are shown in Figure 2.

Characterization data is presented here as **compound** (reaction temperature, reaction time, yield (% purified, % yield based on the reacted C_{60} and C_{70}): ¹H and ¹³C NMR, MS and UV–vis (λ_{max} , nm) spectra.

1-Cyanomethyl-1,2-dihydro[60]fullerene (3a) (50 °C, 1 h, 18%, 34%): ¹H NMR 4.47 (s, 2H), 6.59 (s, 1H); ¹³C NMR (1,2-dichlorobenzene-*d*₄, with benzene as the reference) 35.35 (1C), 58.99 (1C), 60.78 (1C), 135.82 (2C), 136.68 (2C), 140.06 (2C), 140.18 (2C), 141.28 (2C), 141.55 (4C), 141.79 (2C), 141.94 (2C), 142.05 (2C), 142.42 (2C), 142.48 (2C), 143.02 (2C), 144.22 (2C), 144.58 (2C), 145.08 (2C), 145.20 (2C), 145.33 (2C), 145.38 (2C), 145.49 (2C), 145.70 (2C), 146.07 (2C), 146.13 (2C), 146.27 (2C), 146.32 (2C), 146.38 (2C), 147.18 (1C), 147.46 (1C), 151.24 (2C), 151.87 (2C), 192.34 (1C) MS: 720.3 (100), 761.3 (70%) (M⁻); UV-vis 323.1, 432.0. **Methyl ([60]fulleren-1(2***H***)-yl)acetate (3b)** (1 h, 50 °C, 45%, 78%): ¹H NMR 4.09 (s, 3H), 4.47 (s, 2H), 6.80 (s, 1H); ¹³C NMR: 49.43 (1C), 52.36 (1C), 59.41 (1C), 61.18 (1C), 136.54 (2C), 136.89 (2C), 140.32 (2C), 140.40 (2C), 141.76 (4C), 141.77 (2C), 142.08 (2C), 142.21 (2C), 142.31 (2C), 142.68 (2C), 142.72 (2C), 143.36 (2C), 144.62 (2C), 144.92 (2C), 145.46 (2C), 145.55 (4C), 145.72 (2C), 145.77 (2C), 145.93 (2C), 146.30 (2C), 146.33 (2C), 146.48 (2C), 145.55 (2C), 147.05 (2C), 147.08 (1C), 147.65 (1C), 153.48 (2C), 153.98 (2C), 170.48 (1C); MS 719.9 (100), 794.9 (35) (M⁻); UV⁻vis 307.7, 327.9, 434.5.

Ethyl ([60]fulleren-1(2*H*)-yl)acetate (3c)^{47,60} (1 h, 50 °C, 30%, 51%): ¹H NMR 1.58 (t, 3H), 4.45 (2H), 4.56 (q, 2H), 6.82 (s, 1H); ¹³C NMR 14.94 (1C), 49.61 (1C), 59.41 (1C), 61.24 (1C), 61.70 (1C), 136.57 (2C), 136.88 (2C), 140.31 (2C), 140.38 (2C), 141.76 (6C), 142.07 (2C), 142.20 (2C), 142.30 (2C), 142.66 (2C), 142.71 (2C), 143.36 (2C), 144.63 (2C), 144.91 (2C), 145.45 (2C), 145.53 (2C), 145.54 (2C), 145.74 (4C), 145.93 (2C), 146.28 (2C), 146.31 (2C), 146.47 (2C), 145.11 (2C), 169.78 (1C); MS 720.2 (100), 808.2 (75) (M⁻); UV-vis 306.5, 326.7, 433.2.

Benzyl ([60]fulleren-1(2*H***)-yl))acetate (3d)** (50 °C, 40 min, 20%, 40%): ¹H NMR 4.47 (s, 2H), 5.50 (s, 2H), 6.78 (s, 1H), 7.33–7.43 (m, 3H), 7.51–7.56 (m, 2H); ¹³C NMR 49.18 (1C), 58.89 (1C), 60.85 (1C), 67.09 (1C), 128.48 (1C), 128.55 (2C), 128.74 (2C), 135.10 (2C), 136.15 (2C), 136.50 (2C), 139.89 (2C), 139.96 (2C), 141.36 (4C), 141.67 (2C), 141.81 (2C), 141.89 (2C), 142.27 (2C), 142.31 (2C), 142.97 (2C), 144.23 (2C), 144.52 (2C), 145.06 (2C), 145.13 (4C), 145.36 (4C), 145.53 (2C), 145.89 (2C), 145.93 (3C), 146.07 (2C), 146.14 (2C), 146.64 (2C), 146.99 (1C), 147.24 (1C), 153.00 (2C), 153.52 (2C), 169.41 (1C); MS 720.3 (100), 870.2 (75) (M⁻); UV-vis 306.5, 327.9, 434.2.

Phenyl ([60]fulleren-1(2*H***)-yl)acetate (3e)** (room temperature, 1 h, 11%, 47%): ¹H NMR 4.71 (s,2H), 6.89 (s,1H), 7.32–7.39 (m,3H), 7.47–7.52 (m,2H); ¹³C NMR 49.74 (1C), 59.29 (1C), 61.18 (1C), 121.73 (1C), 126.36 (2C), 129.73 (2C), 136.50 (2C), 136.94 (2C), 140.37 (2C), 140.44 (2C), 141.75 (2C), 141.76 (2C), 141.80 (2C), 142.08 (2C), 142.21 (2C), 142.31 (2C), 142.69 (2C), 142.74 (2C), 143.37 (2C), 144.61 (2C), 144.91 (2C), 145.47 (2C), 145.57 (4C), 145.67 (2C), 145.83 (2C), 145.92 (2C), 146.30 (2C), 146.34 (2C), 146.49 (2C), 146.57 (2C), 153.28 (2C), 153.26 (2C), 168.36 (1C); MS 720.0 (100), 856.0 (20) (M⁻); UV–vis 307.7, 326.7, 433.2.

1-Allyl-1,2-dihydro[60]fullerene (3f) (50 °C, 1 h, 19%, 37%): ¹H NMR 4.21–4.24 (dt, 2H), 5.80–5.84 (dp, 1H), 5.94–6.00 (dq, 1H), 6.55 (s, 1H), 6.82–6.93 (m, 1H); ¹³C NMR 51.31 (1C), 58.73 (1C), 64.38 (1C), 121.88 (1C), 133.53 (2C), 136.22 (2C), 136.47 (2C), 140.36 (2C), 140.40 (2C), 141.76 (2C), 141.77 (2C), 142.03 (2C), 142.08 (2C), 142.15 (2C), 142.33 (2C), 142.68 (4C), 143.37 (2C), 144.68 (2C), 144.82 (2C), 145.48 (2C), 145.50 (1C), 145.57 (2C), 145.65 (2C), 145.89 (2C), 146.23 (2C), 146.28 (2C), 146.33 (2C), 146.49 (2C), 146.51 (2C), 147.39 (1C), 147.53 (1C), 153.84 (2C), 155.43 (2C); MS 720.3 (100), 762.3 (8) (M⁻); UV–vis 305.3, 325.5, 433.2.

1-Benzyl-1,2-dihydro[60]fullerene (3g)^{52,73} (35 °C, 30 min, 19%, 36%): ¹H NMR 4.79 (s, 2H), 6.65 (1H), 7.42–7.56 (m, 3H), 7.80–7.84 (d, 2H); ¹³C NMR 53.32 (1C), 59.24 (1C), 65.92 (1C), 127.96 (1C), 128.94 (2C), 131.50 (2C), 135.78 (2C), 136.16 (2C), 136.43 (2C), 140.07 (2C), 140.33 (2C), 141.68 (2C), 141.75 (2C), 141.99 (2C), 142.07 (2C), 142.13 (2C), 142.27 (2C), 142.66 (4C), 143.33 (2C), 144.65 (2C), 144.79 (2C), 145.46 (4C), 145.54 (2C), 145.59 (2C), 145.86 (2C), 146.26 (2C), 146.33 (2C), 146.36 (2C), 146.47 (1C), 146.50 (2C), 147.00 (2C), 147.38 (1C), 147.53 (1C), 153.82 (2C), 155.25 (2C); MS 720.2 (100), 812.2 (45) (M⁻); UV–vis 305.3, 326.7, 434.5.

([60]Fulleren-1(2*H*)-yl)acetophenone (3h) (50 °C, 30 min, 9%, 20%): ¹H NMR 5.22 (s, 2H), 6.73 (s, 1H), 7.67 (t, 2H), 7.75 (t, 1H), 8.38 (d, 2H); ¹³C NMR 53.19 (1C), 59.85 (1C), 61.30 (1C), 128.51 (2C), 129.16 (2C), 133.98 (1C), 136.87 (2C),

⁽⁷²⁾ The experimental procedure used for monoalkylation of $C_{70}\,was$ similar to that used for C_{60}

⁽⁷³⁾ Chen prepared ${\bf 3g}$ by reaction of C_{60} dianion with benzyl bromide. See ref 52.

JOC Article

136.89 (1C), 137.35 (2C), 140.29 (2C), 140.35 (2C), 141.73 (2C), 141.74 (2C), 141.87 (2C), 142.03 (2C), 142.21 (2C), 142.24 (2C), 142.63 (2C), 142.71 (2C), 143.37 (2C), 144.64 (2C), 144.99 (2C), 145.45 (2C), 145.49 (2C), 145.52 (2C), 145.69 (2C), 145.81 (2C), 146.02 (2C), 146.26 (2C), 146.27 (2C), 146.44 (2C), 146.50 (2C), 147.23 (2C), 147.34 (1C), 147.62 (1C), 153.84 (2C), 154.72 (2C), 195.97 (1C); MS 720.3 (100), 840.2 (60) (M⁻); UV-vis 307.7, 324.3, 434.5.

3,3-Dimethyl-1-([60]fulleren-1(2*H***)-yl)-2-butanone (3i)** (50 °C, 50 min, 19%, 27%): ¹H NMR 1.58 (s,9H), 4.72 (s,2H), 6.52 (s,1H); ¹³C NMR 26.91 (3C), 44.69 (1C), 51.50 (1C), 59.91 (1C), 61.18 (1C), 136.86 (2C), 137.26 (2C), 140.27 (2C), 140.31 (2C), 141.70 (2C), 141.72 (2C), 141.86 (2C), 142.01 (2C), 142.18 (2C), 142.24 (2C), 142.62 (2C), 142.70 (2C), 143.37 (2C), 144.63 (2C), 144.98 (2C), 145.45 (2C), 145.48 (2C), 145.50 (2C), 145.64 (2C), 145.80 (2C), 146.01 (2C), 146.24 (2C), 146.27 (2C), 146.43 (2C), 146.49 (2C), 147.20 (2C), 147.34 (1C), 147.60 (1C), 153.78 (2C), 154.74 (2C), 212.12 (1C); MS 720.2 (100), 820.3 (50) (M⁻); UV-vis 306.5, 327.9, 434.5.

Methyl 3-([60]fulleren-1(2H)-yl)crotonate (3j) (50 °C, 15 min, 6%, 10%): ¹H NMR 3.86 (s, 3H), 4.35 (q, 2H), 6.45 (s, 1H), 6.62 (qq, 1H), 7.90 (p, 1H); ¹³C NMR 49.59 (1C), 51.90 (1C), 59.14 (1C), 63.93 (1C), 127.37 (1C), 136.59 (2C), 140.65 (4C), 142.02 (4C), 142.13 (2C), 142.29 (2C), 142.39 (2C), 142.48 (2C), 142.70 (4C), 142.92 (2C), 142.93 (2C), 143.57 (2C), 144.84 (2C), 145.03 (2C), 145.71 (2C), 145.76 (2C), 145.83 (2C), 145.78 (2C), 146.10 (2C), 146.52 (2C), 146.58 (2C), 146.75 (4C), 147.11 (2C), 147.62 (1C), 147.80 (1C), 153.32 (2C), 154.44 (2C), 165.56 (1C); MS 720.2 (100), 820.2 (20) (M⁻); UV-vis 306.5, 324.3, 433.2.

1-(β-Naphthylmethyl)-1,2-dihydro[60]fullerene (3k) (50 °C, 20 min, 9%, 18%): ¹H NMR 4.95 (s, 2H), 6.73 (s, 1H), 7.48– 7.57 (m, 2H), 7.87–7.99 (m, 4H), 8.27 (s, 1H); ¹³C NMR 53.78 (1C), 59.58 (1C), 66.26 (1C), 126.71 (1C), 126.90 (1C), 128.29 (1C), 128.33 (1C), 128.83 (1C), 129.44 (1C), 130.77 (1C), 133.17 (2C), 133.59 (2C), 133.78 (2C), 136.38 (2C), 136.62 (2C), 140.33 (2C), 140.55 (2C), 141.90 (2C), 141.96 (2C), 142.20 (2C), 142.27 (2C), 142.33 (2C), 142.48 (2C), 142.87 (4C), 143.53 (1C), 144.85 (2C), 145.00 (2C), 145.67 (2C), 145.69 (2C), 145.75 (2C), 145.83 (2C), 146.06 (2C), 146.46 (2C), 146.53 (3C), 146.67 (1C), 146.70 (2C), 147.21 (2C), 147.58 (1C), 147.73 (1C), 153.98 (2C), 155.42 (2C); MS 720.2 (100), 862.2 (30) (M⁻); UV–vis 433.2. **Methyl ([70]fulleren-1(2H)-yl) acetate (5a)** (50 °C, 1 h, 25%, 31%): ¹H NMR 3.91 (s, 2H), 3.98 (s, 3H), 4.70 (s, 1H); ¹³C NMR (1,2-dichlorobenzene-*d*₄) 48.88 (1C), 52.04 (1C), 52.08 (1C), 53.04 (1C), 133.76 (2C), 133.79 (2C), 134.82 (6C), 137.76 (2C), 140.42 (2C), 141.44 (2C), 142.55 (2C), 142.88 (2C), 143.14 (2C), 144.71 (4C), 145.76 (2C), 146.44 (2C), 146.72 (2C), 147.19 (4C), 147.58 (2C), 148.81 (2C), 148.87 (2C), 149.06 (2C), 149.27 (2C), 149.51 (2C), 151.20 (2C), 151.22 (1C), 151.24 (1C), 155.14 (2C), 158.68 (2C), 170.05 (1C); MS 840.2 (100), 914.2 (90) (M[¬]); UV–vis 398.3, 462.3.

Methyl ([70]fulleren-5(6H)-yl) carboxylate (5b) (50 °C, 1 h, 3%, 4%): ¹H NMR 3.51 (q, 2H), 3.85 (s, 3H), 4.83 (s, 1H); ¹³C NMR 47.94 (1C), 49.21 (1C), 51.35 (1C), 52.04 (1C), 131.57 (2C), 131.67 (1C), 131.77 (2C), 132.24 (1C), 132.47 (1C), 132.56 (1C), 132.69 (1C), 140.39 (1C), 140.91 (1C), 142.21 (1C), 142.48 (1C), 142.71 (1C), 142.85 (1C), 144.08 (1C), 144.17 (2C), 144.63 (1C), 144.72 (1C), 144.76 (1C), 144.82 (1C), 145.15 (1C), 145.24 (1C), 145.35 (1C), 145.38 (1C), 145.41 (2C), 145.47 (1C), 145.59 (2C), 146.14 (1C), 146.29 (1C), 146.52 (1C), 146.71 (1C), 146.84 (1C), 146.91 (1C), 147.12 (1C), 147.32 (2C), 147.37 (1C), 147.40 (1C), 147.56 (2C), 147.59 (1C), 147.90 (1C), 148.22 (1C), 148.30 (1C), 148.35 (1C), 148.38 (1C), 148.50 (1C), 149.15 (2C), 149.40 (1C), 149.43 (1C), 149.50 (1C), 149.62 (1C), 149.70 (1C), 150.31 (1C), 150.42 (1C), 150.47 (1C), 150.88 (1C), 150.93 (1C), 151.61 (1C), 151.85 (1C), 151.94 (1C), 152.59 (1C), 155.02 (1C), 169.96 (1C); MS 840.2 (100), 914.2 (70) (M⁻); UV-vis 363.6, 397.1.

Acknowledgment. We thank the National Science Foundation (Grant No. CHE 9816339) for financial support of this project. The NMR instruments used in this work were obtained with support from NSF CRIF Grant No. CHE-9974810. Z.W. also thanks Dr. R. G. Bergosh, Ms. M. E. Gallagher, and Dr. J. Kiegiel for their help and for useful discussions.

Supporting Information Available: ¹H and ¹³C NMR, HPLC, MS, and UV–vis spectra for compounds **3a–k** and **5a,b**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO020563O